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Level spacing statistics of classically integrable systems: Investigation along the lines
of the Berry-Robnik approach

H. Makind** and S. Tasaki
lDepartment of Human and Information Science, Tokai University, C-216, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
°Department of Applied Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
(Received 1 April 2002; revised manuscript received 7 March 2003; published 13 June 2003

By extending the approach of Berry and Robnik, the limiting level spacing distribution of a system consist-
ing of infinitely many independent components is investigated. The limiting level spacing distribution is
characterized by a single monotonically increasing funct«i_QIS) of the level spacindgS. Three cases are
distinguished:(1) Poissonian ifu(+%)=0, (2) Poissonian for largeS, but possibly not for smals if 0
<;(+oo)<1, and(3) sub-Poissonian iﬁ(+00)=1. This implies that, even when energy-level distributions
of individual components are statistically independent, non-Poissonian level spacing distributions are possible.
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[. INTRODUCTION [10], this would be the case for the nearly integrable systems
consisting of large number of independent components.
For a bounded quantum system in the semiclassical limitQuantum energy eigenstates are considered to be “a super-
statistical properties of energy levels at a given energy havposition” of various classical trajectories, which are con-
been intensively studied. Universal behaviors are found imected by the tunneling effect. In the semiclassical limit, be-
statistics of unfolded energy levels[1-3], which are se- cause of the suppression of the tunneling, energy eigenstates
guence of numbers uniquely determined by the energy levelare expected to be localized on individual region in phase
using the mean level density obtained from the Thomasspace explored by a typical trajectory of classical system
Fermi rule(see Appendix For quantum systems whose clas- [13], such as tori and chaotic regions, and to form indepen-
sical counterparts are strongly chaotic, the unfolded levetient components. The level spacing distribution is, then, re-
statistics are well characterized by the random matrix theorgarded as a product of superposition of energy levels con-
that gives level spacing distribution obeying the Wigner dis-tributed, respectively, from those independent components.
tribution [4,5]. Based on this view, Berry and Robnik observed that the level
For quantum systems whose classical counterparts are ispacing distribution of the system consisting of a single regu-
tegrable(such systems will be referred to as classically inte-lar component, described by a Poisson distribution, &nd
grable systemslevel statistics were theoretically studied by chaotic components, described by the Wigner distributions of
Berry-Tabor(2], Sinai[6], Molchanov[7], Bleher[8], Con-  equal strength, approaches the Poisson distribution Wihen
nors and Keatind9], and have been the subject of many — +<,
numerical investigations. Still its mechanism is not well un-  The localization of energy eigenfunctions onto individual
derstood, the level spacing distributions are believed to bghase space structures was studied by Berry as a semiclassi-
the Poissor(exponential distribution for generic classically cal behavior of the Wigner functiofl3]. For the classically
integrable systems. integrable system, it is shown that the Wigner function tends
As suggested, e.g., by Hanngee the discussion of Ref. to § function on tori in the semiclassical limftl4]. Such
[10]), one possible explanation would be as follows: For arlocalization phenomenon of eigenfunctions has been ob-
integrable system dfdegrees of freedom, almost every orbit served numerically for several systerfis5—17. For ex-
is generically confined in each inherent torus, and whole reample, in Ref[17], it was shown that the Husimi distribution
gion in the phase space is densely covered by invariant tofunction of each energy eigenstate is well localized either on
as suggested by the Liouville-Arnold theor¢fd]. In other  the classical chaotic regions or on the regular regions filled
words, the phase space of the integrable system consists with classical tori and that the energy eigenvalues corre-
infinitely many tori, which have infinitesimal volumes in sponding to eigenfunctions supported by distinct phase-space
Liouville measure. Then, the energy level sequence of theegions obey distinct statistics.
whole system is a superposition of subsequences, which are Those works seem to imply that the existence of infinitely
contributed from those regions. Therefore, if the mean leveinany independent components is an essential ingredient of
spacing of each independent subset is large, one would exie appearance of Poissonian level spacing distribution and
pect the Poisson distribution as a result of the law of smalthat the semiclassical limit is one of the mechanisms provid-
numberg12]. ing infinitely many components. However, in some classi-
As shown by the pioneering work of Berry and Robnik cally integrable or nearly integrable syster{i,8,18,19,
where one might expect infinitely many components, devia-
tions from the Poissonian distribution have been observed.
*Email address: makino@tokai.ac.jp Therefore, it is interesting to explore the consequences only
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of the existence of infinitely many independent components. o 1
In this paper, along the line of thoughts of Berry and f Sp(S;p)dS= —. (1.4
Robnik[10], we investigate the distribution of unfolded en- 0 P

ergy levels when energy levels consist of infinitely many
independent components, and show the possibility of deviaNOte that the spectral components are not always unfolded

tion from the Poisson distribution. Hereafter, for the sake O@utomatlcally in general even when the total spectrum is un-

simplicity, unfolded energy levels will be referred to as en-fmged' HO\rI]VEVEf, |r} the sufﬂmen; small mterva[lel,_e |
ergy levels or levels. +A€], each spectral component obeys a same scaling law

. : - Appendix and thus is unfolded automatically by an
We briefly review the Berry-Robnik theofiL0]. It relates (see . )
the statistics of the energy level distribution to the phase-overa" unfolding procedure. Equatiofs.2) and(1.4) relate

space geometry by assuming that the sequence of the ener level statistics in the semiclassical limit with the phase-
spectrum is given by the superposition of statistically inde->Pac€ geometry. o
pendent subspectra, which are contributed, respectively, from In_ most general cases, the_ Igvel spacing d|str|but|_o n might
eigenfunctions localized onto the invariant regions in phas e smg'ula.r. In. such a case, Itis convenient to use its cumu-
space. Formation of such independent subspectra is a cond@tive distribution functionu; :
guence of the condensation of energy eigenfunctions on dis-
joint regions in the classical phase space and of the lack of s
mutual overlap between their eigenfunctions, and, thus, can Mi(S)=J pi(x; pi)dX. (1.5
only be expected in the semiclassical limit where the Planck 0
constant tends to zeré,—0. This mechanism is sometimes
referred to aghe principle of uniform semiclassical conden- The corresponding quantity of the overall level spacing dis-
sation of eigenstate0,21], which is based on an implicit tribution is
state by Berry[13]. The validity of this assumption is
checked numerically in the semiclassi¢high energy re- s
gion where the Planck volume is much smaller than the M(S;N)zf P(x;N)dx, (1.6)
phase volume of each invariant regigtb,16,23. 0

In the Berry-Robnik approadi0], the overall level spac-
ing distribution is derived along a line of mathematical whereP(S;N) is the level spacing distribution function cor-
framework by Mehta[4], as follows: Consider a system responding t&E(S;N).

whose classical phase space is decomposedNntigsjoint In addition to Eqs(1.2) and(1.4), we assume two condi-
regions. The Liouville measures of these regions are denoteibns for the statistical weights.
by pi (i=1,2,3 ... N), which satisfy=N,p;=1. LetE(S) Assumption (i) The statistical weights of independent re-

be the gap distribution function, which stands for the prob-gions uniformly vanishes in the limit of infinitely many re-
ability that an interval ((B) contains no levelE(S) is ex-  gions,
pressed by the level spacing distributiBS) as follows:

maxp;—0 as N— +oo. 1.7

o s 1

E(S)=f daJ P(x)dx. (1.9
S 4 Assumption (ii) The weighted mean of the cumulative

distribution of energy spacing,

When the entire sequence of energy levels is a product of

statistically independent superposition Nf subsequences,

E(S;N) is decomposed into those of subsequences, N
E(S:pi), M(PiN):gl piri(p), (1.9
N converges iMN— + to u(p)
BN =11 E(Sp). (1.2
=
lim w(p;N)=pu(p). (1.9

In terms of the normalized level spacing distribution N= e

i(S; pi) of subsequencd;(S;p;) is given b
Pi(S:p) quencé(Sipi) is @ Y The limit is uniform on each closed interval<gp<S.

In the Berry-Robnik theory, the statistical weights of in-
® o dividual components are related to the phase volumes of the
Ei(S;pi)sz daf pi(X; pi)dx, 1.3 corresponding invariant regions. This relation is satisfactory
S o if the Thomas-Fermi rule for the phase space fractions still
holds, in general. Here we do not specify their physical
andp;(S;p;) is assumed to satisfylLO] meaning and deal with them as parameters.
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Under Assumptiongi) and (ii), Egs.(1.2) and (1.4) lead  The second equality follows from E@1.4), integration by
to the overall level spacing distribution whose cumulativeparts and lim  _o[1—u;(co)]=0, which results from the
distribution function is given by the following formula in the

imit of N +oo- existence of the average. Then, the overall cumulative level
— .

spacing distribution functioM (S;N) is given by

— S _
M;(S):l—[l—,u,(S)]eXﬁ{ - fo [1—,(L(0')]d0' ) M(S;N)=1+ diSE(S’N)

(1.10
C pi— pipi(S)
|
where the convergence is in the sense of the weak limit. =1—E(S;N)E 'S ' .
When the level spacing distributions of individual compo- =1 1_pij do[1—pui(o)]
nents are sparse enough, one may expeed and the level 0
spacing distribution of the whole energy sequence reduces to 2.3
the Poisson distribution,
First we consider the behavior &(S;N). Since the conver-
B gence of=N piui(o)— (o) for N—+ is uniform on
p=0(S)=1-exp—9). (11D each intervalr e [0,S] by Assumption(ii),

In general, one may expegt# 0, which corresponds to a

certain accumulation of the levels of individual components.
In the following sections, the above statement is proved

and the limiting level spacing distributions are classified into

N S
0gE(SINI=3, log 1-p, | dof1- (o]

three classes. One of them is the Poisson distribution as dis- N s

cussed in the original work by Berry and Robiik0]. The = —E [pif dO’[l—/.Li(O')]'FO(piz)}
others are not Poissonian. We give examples of non- =1 0

Poissonian limiting level spacing distributions in Sec. Ill. In s N

the concluding section, we discuss some relations between :_J dU[l—M(U;N)]+Z O(piz) (2.4
our results and other related works. 0 i

Il. LIMITING LEVEL SPACING DISTRIBUTION

s _
A. Derivation of the limiting level spacing distribution - JO dof{1-u(o)] as N—+e,

In this section, starting from Eg$1.2) and (1.4), and (2.9
Assumptiondi) and(ii) introduced in the preceding section, where we have usefy(o)|<1, log(l+&=e+O(e) in e

we show that, in the limit of infinitely many components . ; . .
— +o, the level spacing distribution converges weakly t°(<i)'1’ and the following property obtained from Assumption

the distribution with the cumulative distribution function:

N

N
M;(S)=1—[1—;(S)]exp{—Jos[l_;(g)]da}_ ‘21 O(piz) <C miaXpiigl pi=C miaXpi—>0 as N— +oo,

(2.7 (2.6)

According to Helly's theoreni12,23, this is equivalent to With C a positive constant. Thid— -+ limit of the sum in

show that the cumulative distribution functioh(S;N) con-  the right-hand side of Eq2.3) can be calculated in a similar

verges toM (S). The convergence is shown as follows. ~ Way. Indeed, as 1/(2€)=1+0(e) in e<1, one has
Following the procedure by Mehtaee Appendix A.2 of

Ref.[4]), we rewrite the gap distribution functidi(S;N) in N p—pi(S) N N

terms of the cumulative level spacing distribution functions E i Piki — 1_21 PiMi(S)+iEl O(piz)

. S
Y1 [ do1- (o)

ui(S) of independent components: i i

2.7
E(S;N)

i=1

I o[ dota-mo

—1-u(S) as N—+o,
(2.8
=11

=1

N
} 22

S
[1—pifodo[1—m<o>]

Therefore, we have the desired result:
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lim M(S;N)=M(S)=1—[1— u(S)]

N—o

S I
XeXL{—JO[l—,u(a')]d(r . (29

B. Properties of the limiting level spacing distribution
Since w;(S) is monotonically increasing and<Ou;(S)

<1, u(S) has the same properties. Then;y £(S)=0 for
any S=0 and one has

1S _ _
gfoda'[l—,u(a)]el—,u,(—FOC) as S—+oo,
(2.10

The limit cEssifies the following three cases:
Case 1,u(+%*)=0.The limiting level spacing distribution

PHYSICAL REVIEW E 67, 066205 (2003
N

EBR(S;N)=exp(—poS) [ EMVR(S;pp), (2.13
i=1

where the statistical weights ape=(1—po)/N and the in-
dividual level spacing distribution§; corresponding to the
gap distributionsE/V"NER(S; p,) are given by

(2.19

mX a
fi0)= = exr{ - sz :

In addition, this would be the case when the system consists
of identicalN components where the level spacing distribu-
tion is described by a scaled form as E2.11). Such a case

is expected when there is a symmetry, such as the regular
polygonal billiards.

We remark that, when the limiting functioﬁ(S) is dif-
ferentiable, the asymptotic level spacing distribution admits

is the Poisson distribution. Note that this condition is equivathe following density:

lent to 1(S)=0 for ¥S becausex(S) is monotonically in-
creasing.

Case 2 0<;(+oc) <1. For large value of5 the limiting

level spacing distribution is well approximated by the Pois-

son distribution, while, for small value @&, it may deviates
from the Poisson distribution.

Case 3,u(+»)=1.The limiting level spacing distribution
deviates from the Poisson distribution fgfS in such a way

_ _ S —
P,L(S)Z{[l—M(S)]2+M’(5)}EXF{ - fo [1_M(0')]d<7}
(2.15

IIl. EXAMPLE

As an example of the deviation from the Poisson distribu-

that the cumulative distribution function approaches 1Sas tion, we study the quantum systems whose energy levels are
— +o more slowly than does the Poisson distribution. Thisdescribed by using positive integer numbersindi as fol-

case will be referred to as a sub-Poisson distribution.

One has Case 1 if the individual level spacing distribu-

tions are derived from scaled distribution functidnsas

s
Mi(s)zpifofi(PiX)dX, (2.11

wheref; satisfy

J0+wfi(x)dx= 1, Jo+mxfi(x)dx=1

and are uniformly bounded by a positive constdnt
|fi(S)|<D (1<i=<N andS=0). Indeed, one then has

N s N
|u(SN) =2, p?fo [fi(pix)|dx<DS2, pf

N

<DSmaxp; >, pi—0=pu(S). (2.12
i i=1

This includes the case studied by Berry and RoHdi@],

lows:

€mi= M+ ai?, (3.1
where « is the system parameter. Such energy levels are
given, for instance, by the rectangular billiard system whose
aspect ratio of two sides is characterizeddb}y18,24). In this
paper, the unfolding transformation of the energy levels
{emi}—{em,i} (see Appendixis done by using the leading
Weyl term of the cumulative mean numhgrof energy lev-
els,

€mi=Memi)= (3.2

o™

For a given energy intervdle,e+ A?], i or m can be re-
garded as an index that classifies energy levels into spectral
components. In this papars=1,2,3 ... N,

\/4@(1+ y)e—r

aTT

N= (3.3

where the level spacing distribution is a superposition of a o
single regular component arid equivalent chaotic compo- is adopted for classification whene=Ae€/e, and[x] stands
nents, and the latter is expressed by the product of the scaldar the maximum integer that does not exceedhe relative

distributions as in Eq(1.2). Indeed, one has

weight of each componeng; (i=1,2,3 ... ,N), is given by
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4(1+7) \/1+ 1— ai? \/ N _2) o 1
1 aN? 1+y oN2\1+y “ N2 i N a
Nmy| 1+ W T I< 1+y
pi= (3.9
4(1+ 1—-ai? 1 1
/A 1+ +0| — N2+ —
@ NZ if a<'<N
|
As easily seenp; satisfies Assumptiofi), tegersP(S) is not smooth and becomes a sumpdtinctions
in the limit of e— 4+ [2,9,1§, which are separated by same
N Tl 71/2+o e
maxp;<— —— — —
[ P aN? N2
0 N— + (3.5 X=—0
— as — T+, . =—.
4\pa

Note that the Ilimit of infinitely many components\

— +o, corresponds to the high energy limé;— + o [see Figures 2a)—2(c) show the functionlogd 1—M(SN)]| for
Eg. (3.3)], which is equivalent to the semiclassical limit. In three values ofx corresponding to Figs.(4)—1(c), respec-
this limit, the statistical weight of each subspectrum becomesively. The dotted line in each figure corresponds to the Pois-
sparse, since each elementofS;N) and p;u;(S) tends to  son distributionM (S) =1—exp(—9). As shown in Figs. )
zero: pj i (S) <maxp;—0. and Zc), the distribution function for small value &clearly

In the billiard system, each spectral component obeys deviates from the Poisson distribution. However, for large
same scaling lawisee Appendix and thus is unfolded auto- value of S it approaches a line whose slope is(see the

matically by an overall unfolding procedure. dashed ling and thus, the level spacings for large valuesof
Figures 1a)-1(c) show numerical results of the level obey the Poisson distribution.
spacing distributiorP(S) for three values ok. In case that In order to compare the non-Poissonian distributions and

«a is far from rational,P(S) is well approximated by the the classification given in the preceding section, we consider
Poisson distributiofiFig. 1(a)]. While in case thatv is close
to a rational,P(S) shows large deviation from the Poisson

distribution [Figs. 1b) and 1c)]. When « is a rational ex- D(S;N)=— 1 loge| 1— fs[l—M(o"N)]do' . (3.6
pressed asr=p/q, wherep andq are coprime positive in- ' S ¢ 0 '
(a) (b) (c)
2 T T T 2 T T T T 2 T T

1.5 1.5

P(S) :

0.5 0.5

FIG. 1. Numerical results of the level spacing distribut®(S) for various values ofx: (8) a=1+(7/3)x10 4, (b) a=1+(7/2)

x107% and(c) @=1+mx10 . We used energy levels,,; € [300x 107,301x 10’]. Total numbers of levels aréa) 10000 016,(b)
10 000 046, andc) 10 000 043. The dotted curve in each figure shows the Poisson distribB{i8h=e"S.
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(a) (b) (©

100 100 — 100

—~
S

) 2 2

~ 10 10
=
=,
[

-4 -

g w© 16"

% .

10 16°

5 4 2 = 2 — - E
10 10 10 1 100 10 10 10 1 100 10° 10" 10° 1 100
S S S

FIG. 2. Functionlog{1—M(SN)]| for (8) a=1+ (w/3)X 10 %, (b) a=1+(7/2)x10"°, and(c) =1+ 7Xx 10 .. The dotted line in
each figure corresponds to the Poisson distributdd(S) =1 —exp(—9).

WhenN— +, D(S;N) approaches (5”(5)[17;(0)](10 that P(S) deviates from the Poisson distributipRigs. 1(b)

and this function distinguishes the three cases as follows: 18nd Xc)l, D(S;N) approaches a number less than 1 $or
Case 1, i.e., where the level spacing obeys the Poisson dis= . Therefore, these results correspond to Case 2. In this
tribution, lim D(S;N)=1. In Case 2, model, we have not yet observed the clear evidence of Case
. N . 3. Such a case is expected when there is stronger accumula-
imy_,.D(SN)—¢C as S—+e (c#1), and in Case 3, i, of the energy levels of individual components.
where the sub-Poisson distribution is expected,

lim D(S;N)—0 asS— +o.

Nf“c . IV. CONCLUSION AND DISCUSSION

Figure 3 showdD(S;N) for different values ofN. From _ _
this, one can think thab(S;N) for N=61905S<10 well In this paper, along the line of thoughts of Berry and
approximates lig)_, D(S;N). Robnik[10], we investigated the level spacing distribution of

systems with infinitely many independent components and
discussed its deviations from the Poisson distribution. In the
semiclassical limit, reflecting infinitely fine classical phase
space structure, individual energy eigenfunctions are ex-

Figure 4 show®dD (S;N) for the three values ofr corre-
sponding to Figs. (B)—1(c), respectively. In case th&(S)
is well characterized by the Poisson distribut{étig. 1(a)],
the corresponding functio® (S;N) agrees with 1. In case

—_— ]
] (a)
1 = o9}
osl N=61905
08} Poisson
08} distribution
| N=11339 o7
. )
— % 06
L'Zﬁ 06} & s
05} ’
= .. ®)
04} ’
sl 0.3 \\r
02} 02} (c)
01r 01}
o 0
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S S
FIG. 3. D(S;N) for N=11 339 and foN=61 905, which cor- FIG. 4.D(S;N) for (a) a=1+(7/3)x 10 * andN=61 905, (b)

responds to energy levels,;[100<1(°,101x10°F] and e,;  @=1+(m/2)x10"° andN=61906, andc) a=1+mx 10 **and
e[300x 107,301x 10], respectively. In each case, we fixad= 1 N=61906, which are calculated from energy levels; [300
+(/3)X 10" 4. The dashed lineD(S)=1, exhibits the Poisson x107,301x10"]. The dashed lineD(S)=1, exhibits the Poisson
distribution. distribution.
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pected to be well localized in the phase space and give indehaotic component obtained from the random matrix theory.
pendent contribution to the level statistics. Keeping this exThe above distribution formula is classified into the follow-

pectation in mind, we considered a situation where theng cases: Case’] u(+)=0, Berry-Robnik distribution;

system consists of infinitely many components and each ase 2 0<—(+m)<1 Berry-Robnik distribution for
them gives an infinitesimal contribution. And by applying theI b H bl f - and —
arguments of Mehta, and Berry and Robnik, the limiting argeS, but possibly not for smalf; and Case 3 u(+x)

level spacing distribution was obtained, which is described™ 1+ @ distribution function obtained by the superposition of
. . . . L — spectral components obeying the sub-Poisson statistics and
by a smglg monotompa]ly Increasing fun'ctm(S). .Of the the random matrix theory. From this classification, one can
level spacingS. The limiting distribution is classified into g0 that formula4.1) admits deviations from the Berry-
thre.e cases: Case 1, P0|sso.n|ap4f+oc)=0, Casg 2, Pois- Robnik distribution when(+ %) 0.
sonian for largeS but possibly not for smallS if 0<u For nearly integrable systems with two degrees of free-
(+92)<1; and Case 3, sub-Poissoniaruif+o)=1. Thus, dom, Prosen and Robnik showed numerically that the Berry-
even when energy levels of individual components are staRobnik formula(2.13 well approximates the level spacing
tistically independent, non-Poisson level spacing distributiordistributions in the high energy region, which is callggb
is possible. Berry-Robnik regimd28], while it deviates in the low en-
Note that the singular level spacing distribution can beergy region and approximates the Brody distribution. They
taken into account in terms of nonsmooth cumulative distri-studied this behavior in terms of a fractional power depen-
bution M. Such a singularity is expected when there isdence of the spacing distribution near the originSat0,
strong accumulation of the energy levels of individual com-which could be attributed to the localization properties of
ponents. For certain class of systems, such accumulation &genstates on chaotic componef28,30. From the above

observable. One example is shown in Sec. Ill where the reg|assification, one can see that conditjpti+ ) =0 should
sults show clear evidence of Case 2. Another example ige satisfied in the Berry-Robnik regime. While Casead
studied by Shnirelmar{19], Chirikov and Shepelyansky case 3 in the above classification might propose another
[25], and Frahm and Shepelyandi6] for a certain types of  possibilities. When the spectral components corresponding to
systems which contain quasidegeneracy result from inherepggylar regions show strong accumulation, the level spacing
symmetry (time reversibility. As is well known, the exis- statistics obeys the distribution formul@.1) with 0<;
tence of quasidegeneracy leads to the sharp Shnirelman pe(31+ )=<1, and shows deviations from the .Berry—Robnik dis-

at small level spacings. . Do : :
One of the interesting features of the level statistics is thérlbutmn. Such possibilities will be studied elsewhere.

level clustering, which is described by a nonvanishing value

of the level spacing distribution function &= 0. Level clus- ACKNOWLEDGMENTS
tering is expected for integrable systems or mixed systems, . .
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clustering property. Indeed, when(S) is differentiable, the
level spacing distribution functiof2.15 has nonvanishing APPENDIX: UNFOLDING OF SPECTRUM

value atS=0: P,(0)=1+u'(0)>0. The unfolding transformation of each energy leye)}

It is also interesting to extend the Berry-Robnik distribu—ﬁ{:} is done by using the cumulative mean number of
tion (2.13 for the level statistics of the nearly integrable Ievelg up to energy [18]

system with two degrees of freedom. The classical phase
space of this system consists of regular and chaotic regions.

Since the regular regions corresponding to the system consist M([0,e]) = ffd(x)dx. (A1)
of infinitely many independent regions, original proposal for 0

the gap distribution by Berry and Robnik would be replaced

by In the above equatiord(e) exhibits the density of energy
levels obtained by the Thomas-Fermi r{ifg:

N
_Hl EFMT(S;pp),
= V
(4.9 d(e)=ﬂ V(e)=J 8(e—H(q,p))d'qd’p,

(2mh)"’
whereERMT(S:p,) is the gap distribution function of thigh (A2)

S _
EM(S;N):EXF{—POJO [1- u(o)ldo
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where (27%)" is the Planck volume of the system with 1 et e

degrees of freedomy/(¢€) is the phase volume on the energy Ni([e,e+A€])= ff pi(e)V(e)de (A5)

surface,d(e—H) is the § function, H(q,p) is the classical (27h) e

Hamiltonian function, andd,p) are the coordinates and mo-

menta in the phise space. The unfolding transformation of Pi etAe

spectrum{e,} —{e,} (n=1,2,3...) isdefined by = (2Wh)ff€ (e)de
:n:/\[([ovfn])- (A3) =piM]e€,e+A€)). (AB)

Here, we consider the unfolding procedure of ittesub-
spectrum. Since the phase volume of thle component is
pi(e)V(e), the density of each subspectrum is then describe

by

Therefore, in the asymptotic limihe—0, one can see that
Sach spectral component obeys a same scaling law and is
unfolded automatically by an overall unfolding transforma-
tion:

pieV(e)

di(e)= 2y =pi(e)d(e). (Ad)

— 1
En:N(en):;M(En)- (A7)

When the energy interv@k, e+ A €] is sufficiently small, the

phase-space geometry on the energy surface does not The billiard system is very convenient since the phase-
change, in general. In other worgs(€) is approximated by space geometry does not change for variety epf and

a constant value in this ivterval, and the cumulative meanV;(€)=p;M ¢) is satisfactory even when the size of energy

number of theth subspectrum is thus described as interval is not small.
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