
, Japan

PHYSICAL REVIEW E 67, 066205 ~2003!
Level spacing statistics of classically integrable systems: Investigation along the lines
of the Berry-Robnik approach
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By extending the approach of Berry and Robnik, the limiting level spacing distribution of a system consist-
ing of infinitely many independent components is investigated. The limiting level spacing distribution is

characterized by a single monotonically increasing functionm̄(S) of the level spacingS. Three cases are

distinguished:~1! Poissonian ifm̄(1`)50, ~2! Poissonian for largeS, but possibly not for smallS if 0

,m̄(1`),1, and~3! sub-Poissonian ifm̄(1`)51. This implies that, even when energy-level distributions
of individual components are statistically independent, non-Poissonian level spacing distributions are possible.
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I. INTRODUCTION

For a bounded quantum system in the semiclassical li
statistical properties of energy levels at a given energy h
been intensively studied. Universal behaviors are found
statistics of unfolded energy levels@1–3#, which are se-
quence of numbers uniquely determined by the energy le
using the mean level density obtained from the Thom
Fermi rule~see Appendix!. For quantum systems whose cla
sical counterparts are strongly chaotic, the unfolded le
statistics are well characterized by the random matrix the
that gives level spacing distribution obeying the Wigner d
tribution @4,5#.

For quantum systems whose classical counterparts ar
tegrable~such systems will be referred to as classically in
grable systems!, level statistics were theoretically studied b
Berry-Tabor@2#, Sinai @6#, Molchanov@7#, Bleher@8#, Con-
nors and Keating@9#, and have been the subject of ma
numerical investigations. Still its mechanism is not well u
derstood, the level spacing distributions are believed to
the Poisson~exponential! distribution for generic classically
integrable systems.

As suggested, e.g., by Hannay~see the discussion of Re
@10#!, one possible explanation would be as follows: For
integrable system off degrees of freedom, almost every orb
is generically confined in each inherent torus, and whole
gion in the phase space is densely covered by invariant
as suggested by the Liouville-Arnold theorem@11#. In other
words, the phase space of the integrable system consis
infinitely many tori, which have infinitesimal volumes i
Liouville measure. Then, the energy level sequence of
whole system is a superposition of subsequences, which
contributed from those regions. Therefore, if the mean le
spacing of each independent subset is large, one would
pect the Poisson distribution as a result of the law of sm
numbers@12#.

As shown by the pioneering work of Berry and Robn
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@10#, this would be the case for the nearly integrable syste
consisting of large number of independent compone
Quantum energy eigenstates are considered to be ‘‘a su
position’’ of various classical trajectories, which are co
nected by the tunneling effect. In the semiclassical limit, b
cause of the suppression of the tunneling, energy eigens
are expected to be localized on individual region in pha
space explored by a typical trajectory of classical syst
@13#, such as tori and chaotic regions, and to form indep
dent components. The level spacing distribution is, then,
garded as a product of superposition of energy levels c
tributed, respectively, from those independent compone
Based on this view, Berry and Robnik observed that the le
spacing distribution of the system consisting of a single re
lar component, described by a Poisson distribution, andN
chaotic components, described by the Wigner distribution
equal strength, approaches the Poisson distribution wheN
→1`.

The localization of energy eigenfunctions onto individu
phase space structures was studied by Berry as a semic
cal behavior of the Wigner function@13#. For the classically
integrable system, it is shown that the Wigner function ten
to d function on tori in the semiclassical limit@14#. Such
localization phenomenon of eigenfunctions has been
served numerically for several systems@15–17#. For ex-
ample, in Ref.@17#, it was shown that the Husimi distributio
function of each energy eigenstate is well localized either
the classical chaotic regions or on the regular regions fi
with classical tori and that the energy eigenvalues co
sponding to eigenfunctions supported by distinct phase-sp
regions obey distinct statistics.

Those works seem to imply that the existence of infinite
many independent components is an essential ingredien
the appearance of Poissonian level spacing distribution
that the semiclassical limit is one of the mechanisms prov
ing infinitely many components. However, in some clas
cally integrable or nearly integrable systems@2,8,18,19#,
where one might expect infinitely many components, dev
tions from the Poissonian distribution have been observ
Therefore, it is interesting to explore the consequences o
©2003 The American Physical Society05-1
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of the existence of infinitely many independent compone
In this paper, along the line of thoughts of Berry a

Robnik @10#, we investigate the distribution of unfolded e
ergy levels when energy levels consist of infinitely ma
independent components, and show the possibility of de
tion from the Poisson distribution. Hereafter, for the sake
simplicity, unfolded energy levels will be referred to as e
ergy levels or levels.

We briefly review the Berry-Robnik theory@10#. It relates
the statistics of the energy level distribution to the pha
space geometry by assuming that the sequence of the en
spectrum is given by the superposition of statistically ind
pendent subspectra, which are contributed, respectively, f
eigenfunctions localized onto the invariant regions in ph
space. Formation of such independent subspectra is a co
quence of the condensation of energy eigenfunctions on
joint regions in the classical phase space and of the lac
mutual overlap between their eigenfunctions, and, thus,
only be expected in the semiclassical limit where the Pla
constant tends to zero,\→0. This mechanism is sometime
referred to asthe principle of uniform semiclassical conde
sation of eigenstates@20,21#, which is based on an implici
state by Berry @13#. The validity of this assumption is
checked numerically in the semiclassical~high energy! re-
gion where the Planck volume is much smaller than
phase volume of each invariant region@15,16,22#.

In the Berry-Robnik approach@10#, the overall level spac-
ing distribution is derived along a line of mathematic
framework by Mehta@4#, as follows: Consider a system
whose classical phase space is decomposed intoN disjoint
regions. The Liouville measures of these regions are den
by r i ( i 51,2,3, . . . ,N), which satisfy( i 51

N r i51. Let E(S)
be the gap distribution function, which stands for the pro
ability that an interval (0,S) contains no level.E(S) is ex-
pressed by the level spacing distributionP(S) as follows:

E~S!5E
S

`

dsE
s

`

P~x!dx. ~1.1!

When the entire sequence of energy levels is a produc
statistically independent superposition ofN subsequences
E(S;N) is decomposed into those of subsequenc
Ei(S;r i),

E~S;N!5)
i 51

N

Ei~S;r i !. ~1.2!

In terms of the normalized level spacing distributio
pi(S;r i) of subsequence,Ei(S;r i) is given by

Ei~S;r i !5r iE
S

`

dsE
s

`

pi~x;r i !dx, ~1.3!

andpi(S;r i) is assumed to satisfy@10#
06620
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Spi~S;r i !dS5
1

r i
. ~1.4!

Note that the spectral components are not always unfol
automatically in general even when the total spectrum is
folded. However, in the sufficient small interval@e,e
1De#, each spectral component obeys a same scaling
~see Appendix! and thus is unfolded automatically by a
overall unfolding procedure. Equations~1.2! and~1.4! relate
the level statistics in the semiclassical limit with the pha
space geometry.

In most general cases, the level spacing distribution mi
be singular. In such a case, it is convenient to use its cu
lative distribution functionm i :

m i~S!5E
0

S

pi~x;r i !dx. ~1.5!

The corresponding quantity of the overall level spacing d
tribution is

M ~S;N!5E
0

S

P~x;N!dx, ~1.6!

whereP(S;N) is the level spacing distribution function co
responding toE(S;N).

In addition to Eqs.~1.2! and~1.4!, we assume two condi
tions for the statistical weights.

Assumption (i). The statistical weights of independent r
gions uniformly vanishes in the limit of infinitely many re
gions,

max
i

r i→0 as N→1`. ~1.7!

Assumption (ii). The weighted mean of the cumulativ
distribution of energy spacing,

m~r;N!5(
i 51

N

r im i~r!, ~1.8!

converges inN→1` to m̄(r)

lim
N→1`

m~r;N!5m̄~r!. ~1.9!

The limit is uniform on each closed interval: 0<r<S.
In the Berry-Robnik theory, the statistical weights of i

dividual components are related to the phase volumes of
corresponding invariant regions. This relation is satisfact
if the Thomas-Fermi rule for the phase space fractions
holds, in general. Here we do not specify their physi
meaning and deal with them as parameters.
5-2
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Under Assumptions~i! and ~ii !, Eqs.~1.2! and ~1.4! lead
to the overall level spacing distribution whose cumulat
distribution function is given by the following formula in th
limit of N→1`:

M m̄~S!512@12m̄~S!#expF2E
0

S

@12m̄~s!#dsG ,
~1.10!

where the convergence is in the sense of the weak li
When the level spacing distributions of individual comp
nents are sparse enough, one may expectm̄50 and the level
spacing distribution of the whole energy sequence reduce
the Poisson distribution,

M m̄50~S!512exp~2S!. ~1.11!

In general, one may expectm̄Þ0, which corresponds to a
certain accumulation of the levels of individual componen

In the following sections, the above statement is prov
and the limiting level spacing distributions are classified in
three classes. One of them is the Poisson distribution as
cussed in the original work by Berry and Robnik@10#. The
others are not Poissonian. We give examples of n
Poissonian limiting level spacing distributions in Sec. III.
the concluding section, we discuss some relations betw
our results and other related works.

II. LIMITING LEVEL SPACING DISTRIBUTION

A. Derivation of the limiting level spacing distribution

In this section, starting from Eqs.~1.2! and ~1.4!, and
Assumptions~i! and~ii ! introduced in the preceding sectio
we show that, in the limit of infinitely many componentsN
→1`, the level spacing distribution converges weakly
the distribution with the cumulative distribution function:

M m̄~S!512@12m̄~S!#expF2E
0

S

@12m̄~s!#dsG .
~2.1!

According to Helly’s theorem@12,23#, this is equivalent to
show that the cumulative distribution functionM (S;N) con-
verges toM m̄(S). The convergence is shown as follows.

Following the procedure by Mehta~see Appendix A.2 of
Ref. @4#!, we rewrite the gap distribution functionE(S;N) in
terms of the cumulative level spacing distribution functio
m i(S) of independent components:

E~S;N!5)
i 51

N Fr iE
S

1`

ds@12m i~s!#G
5)

i 51

N F12r iE
0

S

ds@12m i~s!#G . ~2.2!
06620
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The second equality follows from Eq.~1.4!, integration by
parts and lim

s→1`
s@12m i(s)#50, which results from the

existence of the average. Then, the overall cumulative le
spacing distribution functionM (S;N) is given by

M ~S;N!511
d

dS
E~S;N!

512E~S;N!(
i 51

N
r i2r im i~S!

12r iE
0

S

ds@12m i~s!#

.

~2.3!

First we consider the behavior ofE(S;N). Since the conver-
gence of( i 51

N r im i(s)→m̄(s) for N→1` is uniform on
each intervalsP@0,S# by Assumption~ii !,

logE~S;N!5(
i 51

N

logF12r iE
0

S

ds@12m i~s!#G
52(

i 51

N Fr iE
0

S

ds@12m i~s!#1O~r i
2!G

52E
0

S

ds@12m~s;N!#1(
i

N

O~r i
2! ~2.4!

→2E
0

S

ds@12m̄~s!# as N→1`,

~2.5!

where we have usedum i(s)u<1, log(11e)5e1O(e2) in e
!1, and the following property obtained from Assumptio
~i!:

U(
i 51

N

O~r i
2!U<C max

i
r i(

i 51

N

r i5C max
i

r i→0 as N→1`,

~2.6!

with C a positive constant. TheN→1` limit of the sum in
the right-hand side of Eq.~2.3! can be calculated in a simila
way. Indeed, as 1/(12e)511O(e) in e!1, one has

(
i 51

N
r i2r im i~S!

12r iE
0

S

ds@12m i~s!#

512(
i 51

N

r im i~S!1(
i 51

N

O~r i
2!

~2.7!

→12m̄~S! as N→1`.
~2.8!

Therefore, we have the desired result:
5-3
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lim
N→`

M ~S;N!5M m̄~S!512@12m̄~S!#

3expF2E
0

S

@12m̄~s!#dsG . ~2.9!

B. Properties of the limiting level spacing distribution

Since m i(S) is monotonically increasing and 0<m i(S)
<1, m̄(S) has the same properties. Then, 12m̄(S)>0 for
any S>0 and one has

1

SE0

S

ds@12m̄~s!#→12m̄~1`! as S→1`.

~2.10!

The limit classifies the following three cases:
Case 1,m̄(1`)50. The limiting level spacing distribution

is the Poisson distribution. Note that this condition is equi
lent to m̄(S)50 for ;S becausem̄(S) is monotonically in-
creasing.

Case 2, 0,m̄(1`),1. For large value ofS, the limiting
level spacing distribution is well approximated by the Po
son distribution, while, for small value ofS, it may deviates
from the Poisson distribution.

Case 3,m̄(1`)51. The limiting level spacing distribution
deviates from the Poisson distribution for;S in such a way
that the cumulative distribution function approaches 1 aS
→1` more slowly than does the Poisson distribution. T
case will be referred to as a sub-Poisson distribution.

One has Case 1 if the individual level spacing distrib
tions are derived from scaled distribution functionsf i as

m i~S!5r iE
0

S

f i~r ix!dx, ~2.11!

where f i satisfy

E
0

1`

f i~x!dx51, E
0

1`

x f i~x!dx51

and are uniformly bounded by a positive constantD:
u f i(S)u<D (1< i<N andS>0). Indeed, one then has

um~S;N!u<(
i 51

N

r i
2E

0

S

u f i~r ix!udx<DS(
i 51

N

r i
2

<DSmax
i

r i(
i 51

N

r i→0[m̄~S!. ~2.12!

This includes the case studied by Berry and Robnik@10#,
where the level spacing distribution is a superposition o
single regular component andN equivalent chaotic compo
nents, and the latter is expressed by the product of the sc
distributions as in Eq.~1.2!. Indeed, one has
06620
-

-

s

-

a

led

EBR~S;N!5exp~2r0S!)
i 51

N

Ei
WIGNER~S;r i !, ~2.13!

where the statistical weights arer i5(12r0)/N and the in-
dividual level spacing distributionsf i corresponding to the
gap distributionsEi

WIGNER(S;r i) are given by

f i~x!5
px

2
expF2

p

4
x2G . ~2.14!

In addition, this would be the case when the system cons
of identicalN components where the level spacing distrib
tion is described by a scaled form as Eq.~2.11!. Such a case
is expected when there is a symmetry, such as the reg
polygonal billiards.

We remark that, when the limiting functionm̄(S) is dif-
ferentiable, the asymptotic level spacing distribution adm
the following density:

Pm̄~S!5$@12m̄~S!#21m̄8~S!%expF2E
0

S

@12m̄~s!#dsG .
~2.15!

III. EXAMPLE

As an example of the deviation from the Poisson distrib
tion, we study the quantum systems whose energy levels
described by using positive integer numbersm and i as fol-
lows:

em,i5m21a i 2, ~3.1!

where a is the system parameter. Such energy levels
given, for instance, by the rectangular billiard system who
aspect ratio of two sides is characterized bya @18,24#. In this
paper, the unfolding transformation of the energy lev

$em,i%→$ēm,i% ~see Appendix! is done by using the leading
Weyl term of the cumulative mean numberN of energy lev-
els,

ēm,i[N~em,i !5
p

4Aa
em,i . ~3.2!

For a given energy interval@ ē,ē1Dē#, i or m can be re-
garded as an index that classifies energy levels into spe
components. In this paper,i 51,2,3, . . . ,N,

N5FA4Aa~11g!ē2p

ap
G ~3.3!

is adopted for classification whereg[Dē/ ē, and @x# stands
for the maximum integer that does not exceedx. The relative
weight of each component,r i ( i 51,2,3, . . . ,N), is given by
5-4
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¦ 4~11g!

NpgS 11
1

aN2DA11
12a i 2

aN2
1OS 1

N2D
if AN21

1

a

11g
< i<N.
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nd
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As easily seen,r i satisfies Assumption~i!,

max
i

r i<
4

p
A11

1

g

1

N S 11
1

aN2D 21/2

1OS 1

N2D
→0 as N→1`. ~3.5!

Note that the limit of infinitely many components,N
→1`, corresponds to the high energy limit,ē→1` @see
Eq. ~3.3!#, which is equivalent to the semiclassical limit.
this limit, the statistical weight of each subspectrum becom
sparse, since each element ofm(S;N) andr im i(S) tends to
zero:r im i(S)<maxjrj→0.

In the billiard system, each spectral component obey
same scaling law~see Appendix!, and thus is unfolded auto
matically by an overall unfolding procedure.

Figures 1~a!–1~c! show numerical results of the leve
spacing distributionP(S) for three values ofa. In case that
a is far from rational,P(S) is well approximated by the
Poisson distribution@Fig. 1~a!#. While in case thata is close
to a rational,P(S) shows large deviation from the Poisso
distribution @Figs. 1~b! and 1~c!#. Whena is a rational ex-
pressed asa5p/q, wherep andq are coprime positive in-
06620
s

a

tegers,P(S) is not smooth and becomes a sum ofd functions
in the limit of e→1` @2,9,18#, which are separated by sam
stepX,

X5
p

4Apq
.

Figures 2~a!–2~c! show the functionu loge@12M(S;N)#u for
three values ofa corresponding to Figs. 1~a!–1~c!, respec-
tively. The dotted line in each figure corresponds to the Po
son distribution,M (S)512exp(2S). As shown in Figs. 2~b!
and 2~c!, the distribution function for small value ofSclearly
deviates from the Poisson distribution. However, for lar
value of S, it approaches a line whose slope is 1~see the
dashed line!, and thus, the level spacings for large value oS
obey the Poisson distribution.

In order to compare the non-Poissonian distributions a
the classification given in the preceding section, we cons

D~S;N!52
1

S
logeF12E

0

S

@12M ~s;N!#dsG . ~3.6!
FIG. 1. Numerical results of the level spacing distributionP(S) for various values ofa: ~a! a511(p/3)31024, ~b! a511(p/2)

31029, and ~c! a511p310211. We used energy levelsēm,iP@3003107,3013107#. Total numbers of levels are~a! 10 000 016,~b!
10 000 046, and~c! 10 000 043. The dotted curve in each figure shows the Poisson distribution,P(S)5e2S.
5-5
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FIG. 2. Functionu loge@12M(S;N)#u for ~a! a511(p/3)31024, ~b! a511(p/2)31029, and~c! a511p310211. The dotted line in
each figure corresponds to the Poisson distribution,M (S)512exp(2S).
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When N→1`, D(S;N) approaches (1/S)*0
S@12m̄(s)#ds

and this function distinguishes the three cases as follows
Case 1, i.e., where the level spacing obeys the Poisson
tribution, lim

N→1`
D(S;N)51. In Case 2,

lim
N→1`

D(S;N)→c as S→1` (cÞ1), and in Case 3

where the sub-Poisson distribution is expect
lim

N→1`
D(S;N)→0 asS→1`.

Figure 3 showsD(S;N) for different values ofN. From
this, one can think thatD(S;N) for N561905,S<10 well
approximates lim

N→1`
D(S;N).

Figure 4 showsD(S;N) for the three values ofa corre-
sponding to Figs. 1~a!–1~c!, respectively. In case thatP(S)
is well characterized by the Poisson distribution@Fig. 1~a!#,
the corresponding functionD(S;N) agrees with 1. In case

FIG. 3. D(S;N) for N511 339 and forN561 905, which cor-

responds to energy levelsēm,iP@1003106,1013106# and ēm,i

P@3003107,3013107#, respectively. In each case, we fixeda51
1(p/3)31024. The dashed line,D(S)51, exhibits the Poisson
distribution.
06620
In
is-

,

that P(S) deviates from the Poisson distribution@Figs. 1~b!
and 1~c!#, D(S;N) approaches a number less than 1 forS
→1`. Therefore, these results correspond to Case 2. In
model, we have not yet observed the clear evidence of C
3. Such a case is expected when there is stronger accum
tion of the energy levels of individual components.

IV. CONCLUSION AND DISCUSSION

In this paper, along the line of thoughts of Berry an
Robnik@10#, we investigated the level spacing distribution
systems with infinitely many independent components a
discussed its deviations from the Poisson distribution. In
semiclassical limit, reflecting infinitely fine classical pha
space structure, individual energy eigenfunctions are

FIG. 4. D(S;N) for ~a! a511(p/3)31024 andN561 905,~b!
a511(p/2)31029 andN561 906, and~c! a511p310211 and

N561 906, which are calculated from energy levelsēm,iP@300
3107,3013107#. The dashed line,D(S)51, exhibits the Poisson
distribution.
5-6
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pected to be well localized in the phase space and give in
pendent contribution to the level statistics. Keeping this
pectation in mind, we considered a situation where
system consists of infinitely many components and each
them gives an infinitesimal contribution. And by applying t
arguments of Mehta, and Berry and Robnik, the limiti
level spacing distribution was obtained, which is describ
by a single monotonically increasing functionm̄(S) of the
level spacingS. The limiting distribution is classified into
three cases: Case 1, Poissonian ifm̄(1`)50; Case 2, Pois-
sonian for largeS, but possibly not for smallS if 0 ,m̄

(1`),1; and Case 3, sub-Poissonian ifm̄(1`)51. Thus,
even when energy levels of individual components are
tistically independent, non-Poisson level spacing distribut
is possible.

Note that the singular level spacing distribution can
taken into account in terms of nonsmooth cumulative dis
bution M m̄ . Such a singularity is expected when there
strong accumulation of the energy levels of individual co
ponents. For certain class of systems, such accumulatio
observable. One example is shown in Sec. III where the
sults show clear evidence of Case 2. Another exampl
studied by Shnirelman@19#, Chirikov and Shepelyansky
@25#, and Frahm and Shepelyansky@26# for a certain types of
systems which contain quasidegeneracy result from inhe
symmetry ~time reversibility!. As is well known, the exis-
tence of quasidegeneracy leads to the sharp Shnirelman
at small level spacings.

One of the interesting features of the level statistics is
level clustering, which is described by a nonvanishing va
of the level spacing distribution function atS50. Level clus-
tering is expected for integrable systems or mixed syste
but not for strongly chaotic systems due to the level rep
sion. For certain class of systems, rigorous results are a
able; Molchanov@7# analyzed the energy levels of a on
dimensional Schro¨dinger operator with random potential an
showed that the level clustering arose from the localizat
of the eigenfunction in the semiclassical limit. Minami al
analyzed a one-dimensional Schro¨dinger operator withd po-
tentials and reported the same result@27#. The limiting level
spacing distribution obtained in this paper possesses l
clustering property. Indeed, whenm̄(S) is differentiable, the
level spacing distribution function~2.15! has nonvanishing
value atS50: Pm̄(0)511m̄8(0).0.

It is also interesting to extend the Berry-Robnik distrib
tion ~2.13! for the level statistics of the nearly integrab
system with two degrees of freedom. The classical ph
space of this system consists of regular and chaotic regi
Since the regular regions corresponding to the system co
of infinitely many independent regions, original proposal
the gap distribution by Berry and Robnik would be replac
by

Em̄~S;N!5expF2r0E
0

S

@12m̄~s!#dsG)
i 51

N

Ei
RMT~S;r i !,

~4.1!

whereEi
RMT(S;r i) is the gap distribution function of thei th
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chaotic component obtained from the random matrix theo
The above distribution formula is classified into the follow
ing cases: Case 18, m̄(1`)50, Berry-Robnik distribution;
Case 28, 0,m̄(1`),1, Berry-Robnik distribution for
largeS, but possibly not for smallS; and Case 38, m̄(1`)
51, a distribution function obtained by the superposition
spectral components obeying the sub-Poisson statistics
the random matrix theory. From this classification, one c
see that formula~4.1! admits deviations from the Berry
Robnik distribution whenm̄(1`)Þ0.

For nearly integrable systems with two degrees of fr
dom, Prosen and Robnik showed numerically that the Be
Robnik formula~2.13! well approximates the level spacin
distributions in the high energy region, which is calledthe
Berry-Robnik regime@28#, while it deviates in the low en-
ergy region and approximates the Brody distribution. Th
studied this behavior in terms of a fractional power dep
dence of the spacing distribution near the origin atS50,
which could be attributed to the localization properties
eigenstates on chaotic components@29,30#. From the above
classification, one can see that conditionm̄(1`)50 should
be satisfied in the Berry-Robnik regime. While Case 28 and
Case 38 in the above classification might propose anoth
possibilities. When the spectral components correspondin
regular regions show strong accumulation, the level spac
statistics obeys the distribution formula~4.1! with 0,m̄
(1`)<1, and shows deviations from the Berry-Robnik d
tribution. Such possibilities will be studied elsewhere.
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APPENDIX: UNFOLDING OF SPECTRUM

The unfolding transformation of each energy level$en%
→$ēn% is done by using the cumulative mean number
levels up to energye @18#,

N~@0,e#!5E
0

e

d~x!dx. ~A1!

In the above equation,d(e) exhibits the density of energy
levels obtained by the Thomas-Fermi rule@5#:

d~e!5
V~e!

~2p\! f
, V~e!5E d„e2H~q,p!…dfqdfp,

~A2!
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where (2p\) f is the Planck volume of the system withf
degrees of freedom,V(e) is the phase volume on the energ
surface,d(e2H) is the d function, H(q,p) is the classical
Hamiltonian function, and (q,p) are the coordinates and mo
menta in the phase space. The unfolding transformation
spectrum$en%→$ēn% (n51,2,3, . . . ) is defined by

ēn5N~@0,en# !. ~A3!

Here, we consider the unfolding procedure of thei th sub-
spectrum. Since the phase volume of thei th component is
r i(e)V(e), the density of each subspectrum is then descri
by

di~e!5
r i~e!V~e!

~2p\! f
5r i~e!d~e!. ~A4!

When the energy interval@e,e1De# is sufficiently small, the
phase-space geometry on the energy surface does
change, in general. In other words,r i(e) is approximated by
a constant value in this ivterval, and the cumulative me
number of thei th subspectrum is thus described as
it

-

-

06620
of

d

not

n

Ni~@e,e1De#!5
1

~2p\! fEe

e1De

r i~e!V~e!de ~A5!

.
r i

~2p\! fEe

e1De

V~e!de

5r iN~@e,e1De#!. ~A6!

Therefore, in the asymptotic limitDe→0, one can see tha
each spectral component obeys a same scaling law an
unfolded automatically by an overall unfolding transform
tion:

ēn5N~en!5
1

r i
Ni~en!. ~A7!

The billiard system is very convenient since the pha
space geometry does not change for variety ofe, and
Ni(e)5r iN(e) is satisfactory even when the size of ener
interval is not small.
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